
4
M O V I E C G I

Some of software’s most impressive work
can be seen in movie theaters. Images that

in earlier eras were painstakingly produced
with models, matte paintings, elaborate cos-

tumes, and trick photography are now created by com-
puters. More than merely simplifying the filmmaking
process, computer-generated imagery (CGI) produces images that would have
been impossible before. For many filmgoers, movies changed forever when
they saw Jurassic Park. When Steven Spielberg was developing the movie, he
expected to create his dinosaurs using old-school effects like automated pup-
pets and animated miniatures, but once he saw some computer-animated test
footage, he decided to use CGI for many of the dinosaur shots. The result
left viewers astounded by images like the panorama shown in Figure 4-1. For
comparison, the old way to put a dinosaur in a movie is shown in Figure 4-2.

How Software Works
© 2015 by V. Anton Spraul

58 Chapter 4

Figure 4-1: CGI dinosaurs visit the watering hole in Jurassic Park (Universal Pictures/
Amblin Entertainment, 1993).

Figure 4-2: The Beast from 20,000 Fathoms (Jack Dietz Productions, 1953) munches
on Coney Island.

Amazing as they were, films like Jurassic Park were just the beginning of
the CGI revolution. Now movies like Avatar create whole worlds using CGI,
so that viewers are never sure what parts of a shot are physically real, if any.
With enough time and money, it seems like filmmakers can produce any-
thing imaginable.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 59

Before computers blew our minds with dinosaurs and lush alien planets,
though, they were transforming the world of traditionally animated movies.
Using computers not only radically altered the process of traditional anima-
tion, but as you’ll discover, the concepts and techniques employed are the
foundation for almost everything in computer graphics. This is where the
story of CGI begins.

Software for Traditional Animation
A movie is a series of still images, or frames, presented to the eye in rapid
succession, like a high-speed slideshow. Each frame lingers on the retina for
a moment after it disappears from the screen, effectively blending with the
next frame to provide the illusion of continuous motion—a phenomenon
known as persistence of vision. Traditionally, movies are shown at a rate of
24 frames per second (fps). Making a movie means producing 24 images
for every second of the film.

A live-action movie uses a camera to collect images in real time. A tra-
ditionally animated film like Lady and the Tramp, though, is created a bit
differently: each frame of the movie is an individually photographed, hand-
crafted work of art.

Traditional animation is a huge undertaking requiring a large team
of artists. Typically, each character in an animated film is assigned a lead
animator, but the lead animator does not draw the character on every frame
in which he or she appears, because that’s too much work for one person.
Instead, the lead animator draws only as many keyframes as are needed to
suggest the action—perhaps one out of every few dozen frames of a finished
animation sequence. Other animators draw the in-between frames to com-
plete the sequence, a process known as tweening. At this stage, the animation
is still just a series of pencil drawings on paper. The drawings must be trans-
ferred to transparent cellulose sheets, which is why this style of animation
is also known as cel animation. Then comes what animators call “ink and
paint”: the faint pencil lines are traced over with black ink, and the cel is
colored. Then the sheets are placed in front of a separately painted back-
ground and photographed.

As you might expect, tweening, inking, and painting are tedious, time-
intensive jobs. Beginning around 1990, computer imagery has been used to
mimic the cel animation style with far less manual labor.

How Digital Images Work
In a traditional animated film, each frame is a photograph of physical art,
but computer animation works with digital images—pictures defined by
numerical data.

When you look at a video display such as a television, a smartphone screen,
or a digitally projected theater screen, the image that reaches your eyes is
made up of dots of varying colors, known as pixels. Figure 4-3 depicts a tree
against a blue sky as a grid of pixels. Each of the 100 pixels in this 10×10
grid is assigned a color, here specified by name.

How Software Works
© 2015 by V. Anton Spraul

60 Chapter 4

Leafy Green

Sky Blue

Bark Brown

Figure 4-3: A tree made of pixels

Although we can think of each pixel as a solid
color, the underlying reality is a bit different. For
example, at home you might watch a movie on a com-
mon liquid crystal display (LCD) television in which
pixel colors are determined by electrically controlled
crystals. On the back of an LCD screen is a light
source, either a fluorescent lamp or a series of light-
emitting diodes (LEDs). The light source itself is white.
In front of the light is a translucent panel with bars in
the three primary colors—red, green, and blue—as
shown in Figure 4-4.

A layer of liquid crystals lying between the light
source and the color panel puts an individually con-
trolled crystal behind each of the translucent bars.
You can think of these crystals as electrically operated doors, and the
degree to which each crystal door is open determines how much light gets
through. By varying the amount of red, green, or blue, any one of millions
of colors can be produced by each pixel. This is additive color mixing, in
which adding more color makes the result brighter. If we want a particular
pixel to come across as bright yellow, for example, we would set the levels of
red and green high, and the level of blue low. If we wanted a dark gray, we
would set each of the color bars to the same low intensity. All three colors at
maximum intensity produce pure white. Later in this chapter, we’ll see an
example of subtractive color mixing, which is what you might remember from
art class, where adding more color makes the result darker.

How Colors Are Defined
The most common way to define a pixel’s color is with the RGB system,
which uses three numbers to represent the intensity of red, green, and blue
in the pixel. The numbers typically range from 0 to 255 to match the range
of an eight-bit byte. This means that each RGB pixel is specified by three
bytes of data.

Red Green Blue

Figure 4-4: Three
bars of pure primary
colors create one
LCD pixel.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 61

As far as software is concerned, a digital image such as that shown in
Figure 4-3 is just a list of bytes of color data, three bytes for each pixel. This
block of bytes is known as the image’s bitmap. The first three bytes in the
bitmap are the red, green, and blue levels of the pixel in the upper-left cor-
ner of the image, and so on. The width and height of an image or bitmap in
pixels is known as its resolution; for instance, Figure 4-3’s resolution is 10×10.
A bitmap called a display buffer stores the colors of each pixel of a digital
display like an LCD television; ultimately, computer graphics methods are
about setting the numbers in a display buffer.

The location of a particular pixel in a bitmap is specified by two coordi-
nates, an x-coordinate for horizontal position and a y -coordinate for verti-
cal position. The (0,0) coordinate, known as the origin, can be located in a
corner or in the center; it varies among different coordinate systems. When
positioning pixels on a physical display, we refer to coordinates as screen coor-
dinates. Screen coordinate systems commonly set the origin at the upper-left
pixel, so a 1920×1080 screen would locate pixels as shown in Figure 4-5.
Here, the y-axis increases moving down the image, the x-axis increases mov-
ing right across the image, and the center location is (960, 540).

x: 0 y: 0

x:1919 y: 1079

x:960 y: 540

Figure 4-5: Locating pixels on a 1920×1080 screen

Coordinate systems are a ubiquitous part of computer graphics and,
as you’ll see in this chapter and the next, much of the work of producing
graphics involves converting coordinates from one system to another.

How Software Makes Cel Animations
Now that you understand what’s inside a digital image, you’re ready to see
how software can make digital images that look like traditional cels. The
first step is getting the artist’s work inside the computer.

Transforming Drawings into Models

Software-generated cel animation starts the same way as traditional ani-
mation: with an artist sketching a character. Instead of drawing on paper,
though, the artist draws with a mouse or an electronic stylus and the draw-
ings are recorded by software. In order to ultimately produce a bitmapped
image, we need a system that defines the artist’s strokes numerically,

How Software Works
© 2015 by V. Anton Spraul

62 Chapter 4

producing a model of the drawing. Locations within a model are called
local coordinates. Figure 4-6 shows a drawing of a bug-man within a box that
defines the local coordinate space.

x: 0 y: 0

x:1000 y: 1000

Figure 4-6: A bug-man drawing inside a box defining coordinate limits

Each line and curve in this model is defined in terms of these local
coordinates. Straight line segments, like the antennae and legs of our charac-
ter, can be defined by the coordinates of the points at either end of the line,
as shown in Figure 4-7. Note that the coordinates here have fractional parts
to increase precision.

x: 450.46 y: 105.33

x: 455.77 y: 201.98

x: 486.07 y: 230.46

Figure 4-7: Defining straight line segments using the
coordinates of the end points

For curves, control points are needed in addition to end points to define
the direction and amount of curvature. Imagine that the control point is
attached to the curve so that moving it controls the degree of curvature, as
illustrated by the simple curves in Figure 4-8. If you’ve ever worked with a
vector graphics application, you’ve likely worked with curves like this.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 63

Figure 4-8: Curves defined by two end points and one control point

Simple curves can be represented by just
two end points and one control point, but
longer, more complicated curves are made
up of sequences of simple curves, as shown
with the bug-man’s shoe in Figure 4-9.

The lines and curves define just the
outline of a character or other drawing; the
colors inside the outline are defined using a
system such as RGB. The character model,
then, is a numerical representation of all the
lines, curves, and color data.

Automatic Tweening

Numerically defining drawings allows for automatic tweening. The animator
draws one frame of a character’s animation sequence, then creates succeed-
ing keyframes by moving the control points of the curves in the previous
frames. The animation software can then generate the other frames through
interpolation. The concept is demonstrated in Figure 4-10. Here, the coor-
dinates of the middle point are calculated as the average of the coordinates
of the other points. The x-coordinate of the interpolated point, 20, is halfway
between 10 and 30; the y-coordinate, 120, is halfway between 100 and 140. In
this example, all the points lie on a line, but the interpolation path can be a
curve as well.

Keyframe 1 Point (10,100)

Keyframe 2 Point (30,140)

Interpolated Point (20,120)

Figure 4-10: Computing a middle point between two keyframe
points via interpolation

Figure 4-9: A complicated
curve made of simple curves

How Software Works
© 2015 by V. Anton Spraul

64 Chapter 4

Figure 4-11 shows how interpolation creates new frames of animation.
The leftmost face is the original model; the second face shows some of the
control points; and the third has a wide mouth created by repositioning two
of the control points downward. The rightmost face was created through
linear interpolation, placing each control point halfway between the two
keyframe positions. Animation software can create as many in-between
positions as necessary to fill the gap between keyframes.

Figure 4-11: From left: a model, the model with selected control points, the model with two
of the control points moved, and a tweened model created by interpolation between the
positions of the previous two models

Although basic interpolation tweening can be a huge time-saver, adjust-
ing the positions of lots of little points remains tedious. More advanced
animation software can treat a character drawing as a complete, intercon-
nected body, in which rigid connections and joints are specified. This
means that an animator need only position the feet for each keyframe to
make our bug-man walk, and the software positions the rest of the legs
accordingly. The software might even handle real-world physics, so that a
sequence of images of our bug-man falling over a log could be animated
entirely by the software.

Positioning and Scaling

Numerical modeling also allows the drawings to be placed anywhere in
a frame at any size. Changing the size of a model is called scaling, and is
accomplished by multiplying or dividing the coordinates for each of the
points. Figure 4-12 shows the bug-man model of Figure 4-6 scaled down
to a quarter of its original area by dividing each of the coordinates in half.
One point on his antenna is highlighted to show the idea.

Placing a model in a particular location on the screen is called transla-
tion, and is accomplished by increasing or decreasing coordinates by fixed
amounts. In Figure 4-13, the shrunken bug-man from Figure 4-12 is trans-
lated to the middle of the screen by adding 700 to each x-coordinate and
200 to each y-coordinate.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 65

Local 0,0

Local 1000,1000

Local 580,210

Local 0,0

Local 500,500

Local 290,105

Original Model Scaled-Down Model

Figure 4-12: Scaling a model means multiplying or dividing each of the coordinates.

Screen 0,0

Screen 1919,1079

Local 0,0
Screen 700,200

Local 500,500
Screen 1200,700

Local 290,105
Screen 990,305

Figure 4-13: Translating a model means adding to or subtracting from coordinates.

“Ink and Paint” for Digital Images

Now that the points on the models are mapped to screen coordinates, it’s
time to transform each frame into a bitmap. This is the software version of
cel animation’s “ink and paint.” To keep things simple, let’s look at how just
the right arm of our bug-man model would be converted to a bitmap, or
rasterized, when displayed over a solid white background. Figure 4-14 shows
the arm over a pixel grid, with circles marking the pixel centers.

How Software Works
© 2015 by V. Anton Spraul

66 Chapter 4

With the model mathematically defined, the software can place the
arm at any position on the bitmap and then apply the indicated color—in
this case, black—to the appropriate pixels. Right away we see there’s a prob-
lem, though: the contours of the arm don’t match the borders of pixels, so
how do we determine which pixels to color? A simple rule is to color pixels
when their centers are covered. Figure 4-15 shows the result of pixel-center
coloring.

As you can see, though, this result is rather ugly. Because the pixels
are square, this coloring rule replaces the gracefully curving border of the
model with a jagged edge, which is why this problem is known as the jaggies.
The general problem is that the model is smooth and continuous, while the
bitmap is made with square black-and-white pixels. The bitmap is just an
approximation of the model. The discrepancy between continuous models
and their bitmap approximations is known as aliasing, and is the source of
many visual anomalies in computer graphics.

To avoid the jaggies, we need to color pixels using an anti-aliasing tech-
nique. In our example, instead of coloring the pixels black and white, we’ll
use a range of grays to produce a better approximation of the model. Each
pixel will be colored based on how much of it is covered by the arm.

In order to put this idea into action, instead of checking only the center
of each pixel, let’s test several points in each pixel to see how many of them
lie within the model. In Figure 4-16, 7 of the 10 testing points scattered
around the pixel area are covered by the shape, meaning this is 70 percent
coverage.

The percentage of each pixel covered by the model determines the gray
level. The result for our bug-man’s arm is shown in Figure 4-17. Although
this example might not look like much, if you hold the page at arm’s length
and squint, the edges should appear to smoothly blend into the white back-
ground, producing the illusion of a graceful curve.

Figure 4-15: Coloring pixels
solid black based on pixel
centers

Figure 4-14: The right arm
of the bug-man super-
imposed over a pixel grid

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 67

Blending into Any Background

We need to generalize the technique just described in order for it to work
with a background other than solid white. Consider Figure 4-18. On the
left is the bug-man model, and in the middle is the background for the
shot in which he’ll appear: a close-up of a setting sun over a rocky terrain.
On the right is the complete image with the model superimposed over the
background.

Model Background Model over Background

Figure 4-18: The bug-man model, a background, and the model superimposed over
the background

This book is printed in black and white, but in this image the sun would
be shades of reddish-orange and the ground would be shades of brown. As
before, pixels along the model’s edge will appear jagged unless we use an
anti-aliasing technique. But using the previous technique to color pixels in
gray tones won’t help the black edge blend into a background of red-orange
and brown pixels.

A more general anti-aliasing technique calculates an alpha level for each
pixel based on the percentage of the pixel that’s covered by the model. You
can think of an alpha level as a measure of opacity. Like the color levels, an
alpha level is typically defined in the range of 0–255. In Figure 4-19, a black

With the model mathematically defined, the software can place the
arm at any position on the bitmap and then apply the indicated color—in
this case, black—to the appropriate pixels. Right away we see there’s a prob-
lem, though: the contours of the arm don’t match the borders of pixels, so
how do we determine which pixels to color? A simple rule is to color pixels
when their centers are covered. Figure 4-15 shows the result of pixel-center
coloring.

As you can see, though, this result is rather ugly. Because the pixels
are square, this coloring rule replaces the gracefully curving border of the
model with a jagged edge, which is why this problem is known as the jaggies.
The general problem is that the model is smooth and continuous, while the
bitmap is made with square black-and-white pixels. The bitmap is just an
approximation of the model. The discrepancy between continuous models
and their bitmap approximations is known as aliasing, and is the source of
many visual anomalies in computer graphics.

To avoid the jaggies, we need to color pixels using an anti-aliasing tech-
nique. In our example, instead of coloring the pixels black and white, we’ll
use a range of grays to produce a better approximation of the model. Each
pixel will be colored based on how much of it is covered by the arm.

In order to put this idea into action, instead of checking only the center
of each pixel, let’s test several points in each pixel to see how many of them
lie within the model. In Figure 4-16, 7 of the 10 testing points scattered
around the pixel area are covered by the shape, meaning this is 70 percent
coverage.

The percentage of each pixel covered by the model determines the gray
level. The result for our bug-man’s arm is shown in Figure 4-17. Although
this example might not look like much, if you hold the page at arm’s length
and squint, the edges should appear to smoothly blend into the white back-
ground, producing the illusion of a graceful curve.

Figure 4-16: A close-up
of one pixel at the end of
the bug-man’s arm, with
a scattering of 10 points
to estimate the area cov-
ered by the model

Figure 4-17: Using grayscale to anti-
alias, shown with and without the
pixel grid.

How Software Works
© 2015 by V. Anton Spraul

68 Chapter 4

bar is superimposed over a tree at different
alpha levels. At an alpha level of 255, the bar
is entirely opaque, while at 25 the bar is barely
visible. An alpha level of 0 would make the bar
completely invisible.

The alpha levels of all the pixels in a bitmap
are collectively referred to as its alpha channel.
The process of making an alpha channel for
a model is similar to how we anti-aliased the
black arm against the white background, only
rather than assigning a shade of gray based on
the pixel’s coverage percentage, we assign an
alpha value for the pixel instead. Each model
is thus conceptually transformed into both a
bitmap, showing the color of each pixel covered
by the model, and an alpha channel, showing
the opacity of each pixel. Figure 4-20 shows the color bitmap (here, just black
pixels) and the alpha channel of the bug-man arm separately.

Model Color Bitmap Alpha Channel

Figure 4-20: The arm of the bug-man model with its corresponding color bitmap and
alpha channel

Now the model can be applied to any background. The final color of
each pixel is a blend of the color in the background and the model’s color
bitmap, with the alpha level determining how much of each color goes into
the mix. In the bug-man scene of Figure 4-18, if a black bug-man pixel with
30 percent alpha were placed on top of a red-orange sunset background
pixel, the result would be a darker red-orange, as shown in Figure 4-21. The
resulting amount of each color component lies somewhere between the two
mixed colors, but because the black pixel is only 30 percent alpha, the red-
orange background color dominates. For pixels completely covered by the
model, the alpha level is 100 percent and the color in the final image is the
same as in the model’s color bitmap. In this way, a bitmap with an alpha
channel can be smoothly blended into any background.

57 55200252125

Figure 4-19: A tree covered
by five black bars of varying
alpha level

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 69

R G B

Black, 30% Alpha

Red-Orange, Opaque

Result

Figure 4-21: The red, green, and blue components of three colors: the
black of the model, the red-orange of the background pixel, and the
result of mixing these two colors if the black has 30% alpha

From Cel Animation Software to Rendered 2D Graphics
These techniques are now the default way to produce cel-style animation,
and software is as common a tool for animation studios as brushes and
paper were in earlier generations. While some animation studios use pro-
grams they developed themselves, most direct-to-video or television ani-
mation and some feature films are made with off-the-shelf software. One
such program, Toon Boom, has been used for television shows such as The
Simpsons and Phineas and Ferb, while the artists at Studio Ghibli use a pro-
gram called Toonz to animate such movies as Spirited Away.

The usefulness of these techniques is not limited to filmmaking,
though. More generally, the software techniques used to mimic tradi-
tional cel-style animation are called two-dimensional graphics, or 2D
graphics, because the control points for models are located with two coordi-
nates, x and y. The general task of transforming models into final images
is called rendering, and the software that performs the task is the renderer.
Rendered 2D graphics are used throughout computing. Many video games,
such as Angry Birds, use the cel-animation look. These rendering techniques
are also used to display fonts and icons in applications such as browsers and
word processors.

Although rendered 2D graphics are ubiquitous in computing and can
make great cel-style animations, creating the mind-blowing visuals of films
like Avatar requires extending these ideas to three dimensions.

Software for 3D CGI
Breathtaking CGI in films like Avatar use 3D graphics. The “3D” here doesn’t
refer to simulated depth perception, like in a 3D movie, but rather to the
three coordinates of each control point in the animation models: x- and
y-coordinates for horizontal and vertical positioning and a z-coordinate to
indicate depth. Figure 4-22 shows a three-dimensional model of a box with
a highlighted point defined by x-, y-, and z-coordinates.

How Software Works
© 2015 by V. Anton Spraul

70 Chapter 4

–z

–x

–y

x: 100
y: 0
z: –100

+x

+y

+z

Figure 4-22: A box in three-dimensional space

As with 2D graphics, 3D graphics are all about rendering models into
bitmaps. The rendering methods that produce the most realistic results
require the most processing time. Movie CGI is impressive largely because
the renderer can process each frame for a very long time, resulting in the
high-quality result that I’ll call movie-quality rendering. We’ll discuss the keys
to movie-quality rendering in this chapter. Then, in Chapter 5, we’ll talk
about graphics for video games, and see how many of the techniques shown
here have to be modified, faked, or scrapped altogether when images must
be produced in real time in response to user interaction.

How 3D Scenes Are Described
3D models are built out of lines and curves just like 2D models, but these
lines and curves stretch across three dimensions instead of two. The box in
Figure 4-22 is a very simple model defined by eight points; the models used
in movie CGI tend to be complex, defined by hundreds, thousands, or even
tens of thousands of points. As with 2D rendering, models in 3D rendering
are defined by local coordinates. The points at the corners of the box in
Figure 4-22, for example, are defined relative to the local origin at the bot-
tom of the box.

While 2D rendering can directly map from local coordinates to screen
coordinates, 3D models are first placed into scenes in a virtual world that
has its own coordinate space called world coordinates. Designing a 3D scene
is the CGI equivalent of building a movie set. We can place as many models as
we want in the virtual world, of any size and at any location, and the renderer
can figure out the world coordinates for all the locations on the models.

Introducing another coordinate system might seem like an unnecessary
complication, but world coordinates actually make 3D graphics much easier
in the long run. For example, an artist can model a dining room chair inde-
pendently of the other models for the scene in which it will be used. Then
the artist can copy the single chair model to make as many seats as needed

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 71

for the dining room scene. Also, a scene, like a movie set, isn’t built to pro-
duce a single image but to create a space that will be shown in many images
from many different angles, as we’ll see in the next section.

The Virtual Camera
With the scenery in place, a viewpoint is needed. On a movie set, a cine-
ma tographer determines what image is captured by placing the camera
and choosing a lens. For CGI, the viewpoint determines how the three-
dimensional scene is transformed into a two-dimensional rendered image.

Transformation from three dimensions to two is known as projection. To
better understand projection, consider Figure 4-23, in which an imaginary
pyramid originates from the eye of a viewer looking at a table. A translu-
cent grid lies in the pyramid between the viewer and the scene. Looking
through the grid, the viewer can map each visible location on the three-
dimensional table to a particular square on the two-dimensional grid. That’s
projection, but instead of a grid of squares, it’s a grid of pixels in a bitmap.

Figure 4-23: Projecting a three-dimensional scene onto a flat display is like
viewing a real-world scene through a translucent grid.

Direct Lighting
There are many different methods of projection, but projection methods in
movie-quality rendering are part of the larger issue of lighting. Although
we don’t often realize it, our perception of an object’s color is determined

How Software Works
© 2015 by V. Anton Spraul

72 Chapter 4

not only by the object itself but also by the lighting under which we view the
object. Knowing this, filmmakers carefully light their scenes for dramatic
effect, but the problem of lighting in CGI is more fundamental. Without an
accurate model of scene lighting, the resulting images won’t look realistic
at all.

To understand why this is true, let’s take a simple scene of a yellow
metal table in a green room, as shown in Figure 4-24.

Yellow Table

Green Walls
and Floor

Viewpoint

Figure 4-24: A 3D scene

From this viewpoint, some of the pixels will be “table” pixels and the
others will be “wall” or “floor” pixels. A simple renderer might color every
table pixel the same shade of yellow, while coloring all the other pixels an
identical green. But because this coloring ignores the effect of lighting, the
resulting image would be flat and unrealistic. (The blocks of solid color
would make the image resemble an animation cel—an interesting effect,
but not realistic.) A movie-quality renderer needs a lighting model so that the
colors in our scenes are influenced by virtual light sources.

The essential real-world lighting effects modeled by CGI renderers
include distance, diffuse reflection, and specular reflection.

The Distance Effect

To understand the distance effect, imagine a lamp emitting pure white light
hanging directly over the middle of the table, as in Figure 4-25.

The closer this light is to the table, the brighter the table appears. In
the physical world, this effect is caused by the beam of light widening as it
gets farther from its source. The more narrowly focused a light source is,
the less the light diminishes with distance—which explains why the highly
focused light of a laser hardly diminishes at all.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 73

Figure 4-25: The closer a light is to a surface, the brighter
the surface appears.

Renderers can model the distance effect realistically, but they also allow
unrealistic distance effects in order to create a particular look or mood.
For example, in a scene where a character carries a torch through a cave, a
lighting designer will decide whether the torchlight extends a long way or
barely penetrates the gloom.

All of the lighting effects we’ll discuss allow these kinds of adjustments.
Although it may seem strange to intentionally create unrealistic light when
the whole point of the lighting model is to make a realistic scene, there’s
a subtle but important distinction between reality and viewers’ expecta-
tions of reality. Using light in unrealistic ways is an old cinematic trick. For
example, when a character in a darkened bedroom turns on a lamp, a stage
light in the ceiling of the set also turns on, so that the entire scene is softly
lit. Without the extra, unrealistic light, the scene won’t look right—it will
appear too dark. In the same way, CGI lighting models allow their controls
to be tweaked to produce results that are a little wrong, but feel right.

The Diffuse Reflection Effect

Light that strikes a surface head-on appears brighter than light that strikes
a surface at a sharp angle. In Figure 4-26, the center of the table seems
brighter, or yellower, than the corners.

How Software Works
© 2015 by V. Anton Spraul

74 Chapter 4

Figure 4-26: Diffuse lighting depends on the angle at
which light strikes a surface.

This is due in part to the distance effect—the center is closer to the
lamp than the corners—but is mostly due to the diffuse reflection effect, a
change in brightness caused by variation in the light’s angle of incidence. In
Figure 4-27, the solid lines show the incident light rays, while the dashed
lines are reflections. As you can see, the light strikes point B at a much
larger angle than at point A, and therefore point B appears brighter than
point A. But note that the viewing angle, or angle of ref lectance, makes no
difference in the diffuse reflection effect. Therefore, point A will look the
same to both viewers, and so will point B.

A B

Angles of Incidence

Figure 4-27: Diffuse lighting varies based on the angle at which the light strikes
the surface, but is the same for all viewpoints.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 75

The Specular Reflection Effect

Because the metal tabletop is highly reflective, it partially acts as a mir-
ror. As with any mirror, what you see in it depends on what lies on the
opposite angle to your point of view. Figure 4-28 shows a shiny spot on the
table where the hanging light is at the opposite angle from our viewpoint,
approximately midway between the center of the table and the closest edge.
Because this spot is a mirror-like reflection of the white light bulb, the spot
will be white.

Figure 4-28: Specular lighting depends on both the angle
at which the light strikes the surface and the view angle.

These shiny spots are known as specular reflections, and appear where
the light’s angle of incidence matches the angle of reflectance. Figure 4-29
shows the location of specular reflections for two different viewpoints;
notice that each ray rebounds at the same angle that it struck the table.
Both viewers see a shiny spot on the table, but they see the spot in different
places.

In the real world, some materials reflect differently than others. A
shiny material like plastic has a high level of specular reflection, while a
dull material like cotton cloth has more diffuse reflection. CGI lighting
models allow artists to set different reflection properties for each surface
on a model to match the appearance of real-world materials.

How Software Works
© 2015 by V. Anton Spraul

76 Chapter 4

A B

Figure 4-29: The specular light on the table appears in different places for
different viewpoints.

Global Illumination
So far we’ve been discussing direct lighting, the result of light flowing directly
from a source to a surface. In reality, the color of every object in the physi-
cal world is influenced by the color of every other object nearby. A light-
brown sofa in a room with white walls looks very different than it does in a
room with blue walls, because the sofa gains a subtle tint from the reflected
light of the walls. This is indirect lighting, and for a computer-generated
image to look realistic, it must account for this effect. A lighting model that
accounts for all of the light in the scene, both direct and indirect, is known
as a global illumination model.

An example of indirect lighting is shown in Figure 4-30. Let’s assume
the light bulb emits pure white light. The beam first hits a wall that is
painted cyan (a light blue). The light reflecting from the wall is likewise
cyan, and when the reflected cyan light strikes the yellow rug, the resulting
reflected light is green. The bouncing colors therefore result in a subtle
greenish tint in the yellow rug. This sequence of color changes is caused
by subtractive color, where mixing colors results in a darker shade, the way
a color inkjet makes different shades by mixing cyan, yellow, and magenta
ink. Subtractive color is the opposite of the additive RGB system we dis-
cussed early in the chapter, in which mixing results in a brighter color.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 77

Cyan Wall

Yellow Rug

Pure White Spotlight

Figure 4-30: Light bouncing off multiple surfaces influences
apparent color.

How Light Is Traced
A global illumination model seems to require following the paths of light
beams as they bounce around the scene. A naive renderer, then, would use
three-dimensional coordinate math to trace the path of every beam of
light from each light source as it bounces from surface to surface. This
would waste a lot effort, though, because it would deduce the color of every
surface in the scene—including surfaces the viewer can’t actually see because
they lie outside of the viewpoint’s field of view, are obscured by other objects,
or are facing away from the viewpoint.

Why Light Is Traced Backward

Renderers avoid this inefficiency by tracing beams backward from the
viewpoint into the scene, a technique known as ray tracing. In ray tracing,
an imaginary line is traced from the viewpoint through the center of each
square in a pixel grid, as shown in Figure 4-31. The geometry of each model
in the scene is compared with the imaginary line to see if the two intersect.
The closest point of intersection to the viewpoint indicates the visible sur-
face that will color the pixel. Note that this method of projection closely
follows the explanation of Figure 4-23.

Next, more lines are traced outward from this known visible point.
The goal is to discover which lines end at light sources, either directly or
after bouncing off other objects. As shown in Figure 4-31, specular reflec-
tions trace only the rebound at the same angle of each impact, but diffuse
reflections trace a number of lines in random directions. As the diffuse
beams strike other objects, they will spawn more diffuse reflections, which
means the number of paths to trace keeps multiplying the more the pro-
cess continues. Renderers apply a cut-off to limit the number of bounces
for each beam.

How Software Works
© 2015 by V. Anton Spraul

78 Chapter 4

Specular

Diffuse

Figure 4-31: Tracing a beam of light from a viewpoint, through the center of the
shaded pixel, until it reaches a model in the scene. To determine specular lighting,
the tracing rebounds at the same angle as impact; for diffuse lighting, it rebounds
at several random angles.

How Ray Tracing Models Real-World Effects

Although ray tracing is a lot of work for even a network of computers, the
method can accurately model many real-world visual effects.

One such effect is translucency. Although a bitmap can be made trans-
lucent by assigning low alpha values to pixels, that’s not the whole story
for transparent materials like glass. A glass tumbler, for example, doesn’t
merely allow light to pass through it, but also distorts whatever is behind it,
as shown in Figure 4-32.

Figure 4-32: The distortion of curved glass

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 79

A ray tracing renderer can refract light beams according to the laws of
optics as they pass through translucent materials. This will not only allow
the renderer to model glass in CGI, but will also help to reproduce the dis-
torting effects of transparent materials and liquids like water.

Ray tracing can also be extended to simulate camera lenses. Normally,
all objects in a computer-generated image are perfectly in focus. In images
shot by a movie camera, though, only objects at a certain distance from the
camera are in focus, leaving other objects less focused the farther they are
from that distance. While one might consider having everything in focus
an advantage of computer-generated imagery, skilled cinematographers
use selective focus to help tell their stories. In Figure 4-33, Jimmy Stewart
and Grace Kelly are in focus in the foreground, while the apartments in
the background are blurry; the viewer’s attention is drawn to the actors,
but the distant, open background is a subtle reminder of how visible the
apartments in this courtyard are from each other—an important detail in
the film. Because movie viewers have grown accustomed to receiving depth
information about scenes through the use of focus, computer-generated
images and movies often must simulate the use of photography lenses to
match viewer expectations.

Figure 4-33: Focus depth in Rear Window (Paramount Pictures/Patron Inc., 1954)

Shadows are another key component of a realistic computer-generated
image. Ray tracing produces shadows naturally, as shown in Figure 4-34.
Because no beam of light can reach the shadowed area, no beam traced
back from the viewpoint can reach the light, so the area will remain dark.

How Software Works
© 2015 by V. Anton Spraul

80 Chapter 4

Figure 4-34: Tracing beams of light renders shadows naturally.

Ray tracing can also model highly reflective surfaces simply by setting
a very high specular reflection property on the material. For example, when
you’re standing inside a well-lit room when it’s dark outside, the room in
which you stand is clearly reflected in the window.

So although ray tracing is computationally intense, adding these real-
world effects doesn’t add much extra work, and the effects add greatly to
the realism of the final image. In the next chapter, you’ll see the tricks video
games use to render reflective surfaces and shadowing in real time, when
ray tracing isn’t an option. Some effects, like glass distortion, are usually
not even attempted in real-time rendering; there’s simply not enough time.

Full-Scene Anti-Aliasing
While the images rendered by ray tracing can be stunning, they can suffer
from the same aliasing problems we saw with 2D graphics. Whenever one
object is in front of another, each projected light beam will either hit the
foreground object or miss and hit what lies behind the object. Figure 4-35
shows a chair on a rug as seen from a particular viewpoint. Beams traced
from this viewpoint near the edge of the chair seat hit either the chair or
the rug, which assigns the associated pixel the color of one surface or the
other. This causes a jagged edge like those we saw for 2D images.

The renderer can avoid the jaggies by applying anti-aliasing to the
whole image. There are many methods for full-screen anti-aliasing, but with
ray tracing, a direct way to anti-alias the entire scene is to project more
beams from the viewpoint than necessary. For example, rather than just
sending out a beam at the center of every pixel, the renderer might also
send out beams into the spaces between the pixel centers. After the color
for every beam is determined, the final color of each pixel is blended from
the colors of the center beam and the beams at the neighboring corners.
Pixels that lie along an edge in the image are thereby assigned intermediate
colors, avoiding the jagged “staircase” effect.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 81

Figure 4-35: In the highlighted area, each light beam trace ends on the
chair or the rug, resulting in jaggies.

Figure 4-36 demonstrates this idea. Each circle represents a beam pro-
jected into a scene. The pixels are colored based on the average of colors in
the center and corners of each pixel, which results in the anti-aliased edge
shown on the right. More beams can be traced for even better results, at the
expense of more processing time.

Figure 4-36: Each pixel’s final color is a blend of
five beams traced into the scene, one at the center
of the pixel, and four at the corners.

Combining the Real and the Fake
In a completely computer-animated film, rendering is the final step in pro-
ducing each frame, but when CGI is integrated into live-action films, there’s
more work to be done. Imagine, for example, a scene in which a computer-
generated Tyrannosaurus rex stalks through a real field of grass.

How Software Works
© 2015 by V. Anton Spraul

82 Chapter 4

To make this happen, we first need two sequences of digital images.
One sequence shows the grass field, and has either been shot on a digital
camera or on a traditional film camera and then subsequently scanned.
Either way, the movements of the camera are computer controlled, which
allows the camera movement to match up precisely with the movement of
the virtual camera in the other sequence, the computer-generated anima-
tion of the dinosaur.

Next, the two sequences are combined, frame-by-frame, in a process
called digital composition. Although the dinosaur sequence was produced
from 3D models, at this point both sequences are simply two-dimensional
bitmaps and are combined using the same method used to place our bug-
man on top of the sunset back in Figure 4-18. Through the use of alpha
blending, the edges of the dinosaur in each frame are smoothly blended
with the field-of-grass background. Without this blending, the dinosaur will
have a shimmering edge like that of a weatherman standing in front of the
five-day forecast.

Digital composition is used throughout modern moviemaking, even
when no computer-generated imagery is involved, such as for dissolves (a
transition where one scene smoothly fades into the next). Formerly, dis-
solves were produced by a device known as an optical printer, which pointed
a camera at a screen onto which several projectors were aimed. The camera
would make a new film that combined the images of the projected films.
A dissolve was accomplished by turning down the light in one projector
while turning up the light on another. The results were acceptable, but
you could always spot an optical printer sequence in a movie because the
second-generation images would be blurry compared to the rest of the film.
Now, dissolves, superimposed titles, and all sorts of other movie effects
that you might not really think of as “effects” are performed with digital
composition.

The Ideal of Movie-Quality Rendering
When all the advanced rendering techniques described in this chapter
come together, the results can be stunningly realistic, highly stylized, or
anything in between. The only real limitation on CGI is time, but that’s a
big limitation. The truth is, what I’ve been calling movie-quality rendering
can be an unattainable ideal even for Hollywood. Although films can be
in production for several years, there’s only so much time that can be allot-
ted for each frame. Consider the computer-animated Pixar film WALL-E.
With a running time of 98 minutes, the film required the rendering of over
140,000 high-resolution computer images. If Pixar wanted to produce all
of the images for WALL-E in two years, it would have to render images, on
average, every eight minutes.

How Software Works
© 2015 by V. Anton Spraul

Movie CGI 83

Even on a networked “render farm,” eight minutes is not sufficient
to use ray tracing, global illumination, glass refraction, and all the other
high-end techniques for every single image. Faced with these practical
constraints, filmmakers pick and choose which techniques to use on each
sequence to maximize visual impact. When ideal rendering is required, the
time is spent, but when the best effects won’t be missed or the budget won’t
allow it, they aren’t used. The renderer used at Pixar—a program called
RenderMan that was originally developed at Lucasfilm—can forgo ray trac-
ing and its massive associated computational effort, but that means many of
the realism-enhancing effects have to be produced some other way.

But how is that done? What kinds of tricks are needed to render images
without ray tracing—images that may not be perfectly realistic but are still
amazing? To answer this question, we’ll turn from Hollywood to the world
of video games, where rendering is under an extreme time limitation. How
extreme? If eight minutes isn’t enough time to produce an ideal render,
imagine trying to render an image in under 20 milliseconds. In the next
chapter, we’ll see how video games produce great graphics in a hurry.

How Software Works
© 2015 by V. Anton Spraul

	HSW_onlinepdf 76
	HSW_onlinepdf 77
	HSW_onlinepdf 78
	HSW_onlinepdf 79
	HSW_onlinepdf 80
	HSW_onlinepdf 81
	HSW_onlinepdf 82
	HSW_onlinepdf 83
	HSW_onlinepdf 84
	HSW_onlinepdf 85
	HSW_onlinepdf 86
	HSW_onlinepdf 87
	HSW_onlinepdf 88
	HSW_onlinepdf 89
	HSW_onlinepdf 90
	HSW_onlinepdf 91
	HSW_onlinepdf 92
	HSW_onlinepdf 93
	HSW_onlinepdf 94
	HSW_onlinepdf 95
	HSW_onlinepdf 96
	HSW_onlinepdf 97
	HSW_onlinepdf 98
	HSW_onlinepdf 99
	HSW_onlinepdf 100
	HSW_onlinepdf 101
	HSW_onlinepdf 102

